Electronics

External Audience Protocol (EAP) - Sound bars

© 2021 Consumer Reports, Inc. This document is the property of Consumer Reports and is intended for the recipient’s internal use only. You may not republish this document or provide copies to third parties or authorize anyone else to do so without Consumer Reports’ prior written consent. You may not use or authorize any third party to use Consumer Reports’ names, ratings or trademarks (i) in any form of advertising, marketing or promotion; (ii) in any manner that may be construed as an endorsement by Consumer Reports; or (iii) in any manner inconsistent with CR’s No-Commercial Use Policy without Consumer Reports’ prior written consent.

This document’s contents may not be used in connection with any legal proceedings (including but not limited to litigation involving warranties, marketing claims, product liability, market share, injury or property), regulatory standard setting, administrative investigations or enforcement proceedings, or in connection with any other type of proceedings to which Consumer Reports is not a party. This document is otherwise subject to the terms of Consumer Reports’ User Agreement. Learn more at CR.org.
External Audience Protocol (EAP) - Sound bars

Introduction

The following document presents the protocol for testing and evaluating Home Theater in a Box, sound bar, and sound base audio systems at Consumers Reports. (For the purposes of brevity, we will use the term “system” to refer to both Home Theater in a Box systems, sound bar, and sound base systems in general. In situations where it is important to make a distinction we will refer specifically to Home Theater in a Box systems, sound bar systems, or sound base systems. The purpose of this test process is to expose the performance strengths and weaknesses for each system under test and to make a final assessment of each system’s overall performance. The following steps can summarize a high level description of our test process:

1. System audio set-up and adjustment
2. Sound quality test
3. Ease of use test
4. Versatility assessment

Audio Quality Expectations

A system may have user-adjustable or non-adjustable audio controls. Some of these controls, such as bass and treble controls, tone presets, multi-band graphic equalizer, and/or a “direct” (video circuit bypass and/or tone control bypass) setting, can be used to adapt the system to the listening environment to achieve the flattest frequency response or theoretically provide the clearest sound possible for that system; they can also be used to adjust the system frequency response to user taste. Other controls, such as DSP reverberant field effects, stereo to multi-channel matrixing, simulated surround sound, and 3-D sound, can be used to add enhancement to the original audio program which users may, or may not desire.

At CR, the audio test process is designed to determine the baseline fidelity of audio reproduction to the original source for a given audio system. This means turning off, if possible, all audio enhancement modes, and, if needed, using any provided frequency response adjustment controls (which includes any “direct” setting switch) to achieve the best combination of clearest sound and flattest frequency response for the system under test in our test environment. The systems under test are sequentially compared to reference audio systems that represent various standards of quality. The characteristics that we look for when assessing audio quality are as follows:
External Audience Protocol (EAP) - Sound bars

- **Clarity and detail** - Ideally notes should be distinct and clean, there should be a sense of space between instruments and voices, complex musical lines and vocal harmonies shall maintain their richness and detail and should not sound homogenized, and the recording site ambience should be clearly evident and unique - different recordings should have distinctly different ambient sounds.

- **Frequency response** - Ideally the reproduced frequency response should be flat throughout the entire audible frequency range. Bass should be extended (no low bass roll-off), and should have a solid quality that is not thumpy, boomy, thuddy, etc. The midrange should be full and smooth, and should not sound nasal, thin, gritty, etc. Treble should be extended (no high frequency roll-off) and smooth, and shall not sound peaky, sizzly, etc.

- **Spatial image placement (vertically, laterally, and depth)** - Ideally the system should be provide a stereo sound stage that has a reasonable sense of height, width, and depth; The placement of instruments and voices in the sound stage shall be realistic and consistent with the placement found with the better reference systems.

- **Dynamics** - The dynamics of the audio program shall not be noticeably compressed or exaggerated.

- **Freedom from obvious distortion at reasonable volume levels** - This includes electrically based distortions (such as clipping, intermodulation, etc.) and mechanically based distortions (such as voice coil rubbing, speaker cabinet buzzing, etc.).

- **Seamless sound field integration for multi-channel systems** - The center channel and surround speakers of a multi-channel system shall have a similar sound characteristic to the front speakers from at least the upper bass to the lower treble frequency region and shall blend seamlessly with the front speakers in terms of all of the characteristics noted above.

For sound bar and sound base systems, the efficacy of any simulated surround sound and/or 3D sound feature is also commented on.

Test Infrastructure

The audio system test environment at CR consists of a dedicated testing room (lab) patterned after the applicable specifications of IEC Publication 268-13: Sound System Equipment, part 13, Listening Tests on Loudspeakers. The lab has an analog switching system that is used to switch audio input signals between a high reference system, and any combination of up to five systems under test or benchmark reference systems. There are also provisions for audio connections to test systems via HDMI, optical, and coaxial digital cables, and Bluetooth and Wi-Fi wireless streams. In addition to the high reference system, four additional reference systems that represent four different performance benchmarks are used for audio quality judgments. Audio analysis software, a computer, a microphone, and other assorted support hardware are used when setting up the systems to verify proper operation and frequency response adjustment of the reference systems and to optimize and record the frequency response of the systems under test.
Description of Test Process

1.0 Audio Set-up

● Reference system set-ups:

All reference systems are set up in a stereo configuration with any audio enhancement features turned off. The following parameters are optimized first through positioning of the speakers and subwoofers, if any, and then through use of their auto or manual calibration function if any, tone controls, tone presets, and/or built-in equalizers (an outboard equalizer is used with the high reference system):

 o Spatial imaging
 o Frequency response

All measurements and judgments are made from a fixed listening position located midway between the speakers of the reference system being set up and at a fixed distance from the rear listening room wall. Spatial imaging is optimized via subjective judgment. Frequency response is optimized via pink noise reproduction measurements using a microphone and audio analysis software, and further adjusted by subjective judgment if the frequency response is not flat to a fixed dB tolerance. All reference systems are set to the same moderate volume level as determined first by pink noise measurement and then subjective judgment of a vocal passage. Once a reference system has been optimized, its pink noise frequency response curve and all pertinent mode, tone, and volume settings are documented for future reference and verification.

● Test system set-up:

A multi-channel system is initially set up in a multi-channel configuration with any audio enhancement features turned off, and any automatic or manual calibration function is run. It is then switched to stereo mode. Two channel systems are set up in a stereo configuration with any audio enhancement features turned off. If they have an auto or manual calibration function then that is run. The following parameters are optimized first through positioning of the speakers (which may not be possible with soundbars or models that have front speakers in a soundbar-style array) and subwoofers, if any, and then through use of their tone controls, tone presets, and/or built-in equalizers, if any:

 o Spatial imaging
 o Frequency response

All measurements and judgments are made from a fixed listening position located midway between the speakers of the test system being set up and at a fixed distance from the rear listening room wall. Spatial imaging is optimized via subjective judgment. Frequency response is optimized via pink noise reproduction measurements using a microphone and audio analysis software, and further adjusted by subjective judgment if the frequency response is not flat to a fixed dB tolerance. All test systems are set to the same moderate volume level as the reference systems as determined first by pink noise measurement and then subjective judgment of a vocal passage. Once a test system has been optimized
External Audience Protocol (EAP) - Sound bars

its two speaker stereo pink noise frequency response curve and all pertinent mode, tone, and volume settings are documented for future reference and verification. In the case of systems with individual speakers, without changing adjustments the right front speaker is disconnected and pink noise frequency response curves are recorded, if possible and applicable, for the left front channel running the left front speaker, center channel speaker, left surround speaker, and left rear surround speaker. At the time of the recording, each speaker is placed in the position that was originally occupied by the left front speaker.

2.0 Audio Tests

- Subjective Audio Tests:

Select tracks from commercially available uncompressed audio CD quality (44.1kHz/16 bit) or higher program material, and select scene soundtracks from commercially available movie and music video DVDs and Blu-ray discs are used in testing. Each “test track” has particular audio content (i.e. deep bass with a resonate quality, detailed delicate treble, midrange with complex instrumental and vocal layering, natural recording site ambience, artificially added echo, dry multi-tracked recording space, complex sound mix that has the potential to mask movie dialog, etc.) that is used to characterize the test system’s performance and rank it in comparison to the reference systems. A group of trained listeners assesses the audio performance of the systems for the test tracks based on the characteristics listed under the Audio Quality Expectations section above.

3.0 Ease of Use

Ease of use evaluations are conducted by panelists that fill out a questionnaire that assess the following attributes:

- TV setup – covers the steps that a user will have to take to get the system ready for use with a TV such as physical set-up (making wiring connections), setup of TV integration features (HDMI-CEC, programming the soundbar to respond to a TV’s remote, etc.) and, if applicable and required for TV use, WiFi/Ethernet network connection and setup including setup of an integrated voice control feature. Considerations include: are adequate setup instructions provided, what connection cables are included, and if any set-up menus are provided (console display, OSD or in the WiFi app) are they intuitive to use.

- TV ease of use - covers day-to-day operation with a TV source using, as applicable, the system’s TV integration features, physical remote, mobile device remote app downloads (WiFi or Bluetooth as applicable), integrated voice control feature, and console. Considerations include what controls are provided, how intuitive are the controls to use, control ergonomics, control responsiveness and freedom from glitches, and what system status information is provided and how clearly is the information presented by the console, OSD, app and physical remote displays, as applicable.

- Non-TV features setup – covers the steps that a user will have to take to get the system ready for use with sources other than a TV such as Bluetooth pairing, and if applicable but not required for TV use, WiFi/Ethernet network connection and setup including setup of an integrated voice control feature. Considerations include: are adequate setup instructions provided, and if any set-up menus are provided
External Audience Protocol (EAP) - Sound bars

(console display, OSD or in the WiFi app) are they intuitive to use.

- **Non-TV features ease of use** - covers day-to-day operation with non-TV sources using, as applicable, the system’s physical remote, mobile device remote app downloads (WiFi or Bluetooth as applicable), integrated voice control feature, and console. Considerations include what controls are provided, how intuitive are the controls to use, control ergonomics, control responsiveness and freedom from glitches, and what system status information is provided and how clearly is the information presented by the console, OSD, app and physical remote displays, as applicable.

4.0 Versatility

Tabulation of value-added features such as the number and types of audio and video inputs and outputs, the presence of USB drive readers, Bluetooth connectivity, Internet and network connectivity, provisions for optional speakers for additional channels, wireless speaker system capability, UltraHD HDR video pass-through and switching, tone adjustability, universal remotes, on-screen display output, built-in or optional voice control, etc.